
 1

 Abstract— This paper presents a new genetic algorithm for the
single machine total weighted tardiness scheduling problem,
which is a strong NP-hard problem. The developmental focus
has been on techniques to speed up execution in order to solve
large-size problems. This genetic algorithm uses the natural
permutation representation of a chromosome for encoding
simplicity. Heuristic dispatching rules combined with a random
method are used to create the initial population for improving
(decreasing) the search space, consequently improving searching
simplicity. Position-based crossover and order-based mutation
operators are used for operator simplicity. The best members of
the population during generations are used for searching
simplicity, too. Extensive computational results for randomly
generated problems with up to 500 jobs show the good
performance and the efficiency of the developed algorithm.

Keywords: Scheduling, Genetic algorithm, Local search

1. INTRODUCTION

The single machine total weighted tardiness problem is to
schedule n jobs on a single machine to minimize the sum of
the weighted tardiness of all the jobs. For arbitrary positive
weights, it is strongly NP-hard [12]. Many scheduling
problems, which do not have efficient, so-called polynomial
time, optimal algorithms, are the so-called NP-hard problems;
efficient optimal algorithms are unlikely to exist for these
problems. An algorithm is referred to as a polynomial time
algorithm when the number of iterations in the algorithm is
polynomial in the size (n, the number of jobs) of the problem.
Consider the various permutations of the n jobs of the total
weighted tardiness problem to find the optimal schedule. Even
for a modest-sized problem, complete enumeration is not
computationally feasible since the complete enumeration
requires the evaluation of n! sequences (e.g., a 20-job problem
requires the evaluation of more than 2.4 * 1018 sequences)
[22].

As single machine scheduling problems can provide help
and insight into resolving, understanding, managing, and
modeling more complex multi-machine scheduling problems,
the single machine total weighted tardiness problem has

Manuscript received ___ Revised Dec 8th, 2005. This work was supported, in
part, by the Center for Manufacturing Research, Tennessee Technological
University.
* Ning Liu is a Ph.D. student at the Department of Electrical and

Computer Engineering, Tennessee Technological University (email:
ningliu2001@yahoo.com)

** Dr. Abdelrahman is an associate professor at the Department of
Electrical and Computer Engineering, Tennessee Tech University
(email: mabdelrahman@tntech.edu)

+ Srinivasan Ramaswamy is currently professor and chairperson of the
Computer Science Department at University of Arkansas at Little Rock.
(e-mail: srini@ieee.org / srini@acm.org)

received much attention in literature. The single machine total
weighted tardiness problem has been tackled by enumerative
algorithms: branch and bound algorithms [10, 17, 19, 22] and
dynamic programming algorithms [21] to generate exact
solutions that are guaranteed to be optimal. But the branch and
bound algorithms are limited by computational times and the
dynamic programming algorithms are limited by computer
storage requirements, especially when the number of jobs is
more than about 50 [4]. Thereafter, the problem has been
extensively studied by heuristics -- solution procedures that
generate good or even optimal solutions, but do not guarantee
optimality.

These heuristics include heuristic dispatching rules [2, 11,
26] and local search heuristics. As there is no single best
dispatching rule for all problem environments, in other words,
dispatching rules do not consistently provide good quality
solutions, in recent years, much attention has been devoted to
local search heuristics [9, 14, 24]. These local search
heuristics mainly include neighborhood search methods, such
as descent methods, simulated annealing, threshold accepting,
and tabu search [4, 6, 15, 19]; and genetic algorithms (GA) [3,
4, 13].

Crauwels et al. [4] compare the performance of a number
of local search heuristics that have the binary representation,
namely, descent methods, simulated annealing, threshold
accepting, tabu search, and GA, for total weighted tardiness
problems with 40, 50, and 100 jobs. The paper indicates that
its binary encoded GA performs very well and requires
comparatively little computation time; this binary encoded GA
is also a viable alternative to other heuristic methods,
especially in view of its small maximum relative deviations
and modest computation time. Madureira et al. [13] also
obtain good solutions in a short time by a natural permutation
encoded GA for problems with 40 and 50 jobs. Avci et al. [3]
propose a GA for problems with 200 jobs that use global and
local dominance rules to improve the neighborhood structure
of the search space and obtain almost the same results as those
of Crauwels et al. [4].

In this paper, we present a new genetic algorithm for
solving the single machine total weighted tardiness problem.
Our algorithm is different from the algorithms in [3, 4, 13],
and in chromosome representation, initial creation of the
population, genetic operators, parameters selection, and
population replacement. Technique simplicity is employed as
guidance throughout the development of this genetic
algorithm to speed up its running in order to solve large-size
problems. The algorithm is illustrated using 500-job problems.

This genetic algorithm uses the natural permutation
representation of a chromosome for encoding simplicity.

A Genetic Algorithm for Single Machine Total
Weighted Tardiness Scheduling Problem

Ning LIU*, M. ABDELRAHMAN**, Srini RAMASWAMY +

 2

Heuristic dispatching rules combined with random methods
are used to create the initial population for improving
(decreasing) the search space, thereby improving searching
simplicity. Position-based crossover and order-based mutation
operators are used for operator simplicity. The best members
of the population during generations are used for searching
simplicity, too. The algorithm has been applied to two 7-job
problems, two 10-job problems, and one 25-job problem to
show optimal solutions obtained. The algorithm has also been
applied to solve randomly generated problems with 50, 100,
200, and 500 jobs. Their computational results are compared
with those of other scheduling methods to show the
improvement from the better of two heuristic dispatching
rules, Earliest Due Date (EDD) and Weighted Shortest
Processing Time (WSPT), whose definitions are given in
Section 3.

The paper is organized as follows. Section 2 presents the
definition of the single machine total weighted tardiness
problem. Section 3 describes the genetic algorithm for solving
this problem. Section 4 reports the computational results of
the algorithm. Section 5 summarizes the main conclusions.

2. PROBLEM DEFINITION
The single machine total weighted tardiness problem is

defined as follows. Consider n jobs to be processed without
interruption on a single machine that can handle only one job
at a time. Each job j, available for processing at time zero, has
a positive processing time pj, a positive weight wj, and a
positive due date dj. For a given sequence of jobs, the
tardiness of job j is defined as Tj = max {0, Cj – dj}, where Cj
is the completion time of job j. The objective of the total
weighted tardiness problem is to find a processing order of all
the jobs; this order is a schedule that minimizes the sum of the
weighted tardiness ∑ =

n
j jjTw1 of all jobs. Thus, the problem

is to schedule n jobs on a single machine to minimize the sum
of the weighted tardiness of all the jobs.

3. GENETIC ALGORITHM
Genetic Algorithms (GAs) were originally proposed by

John H. Holland [7]. They are search algorithms that explore a
solution space and mimic the biological evolution process.
There are many GA implementations successfully applied to a
great variety of problems [5]. The main components of a
genetic algorithm are as follows [1]:

1. Solution encoding: A chromosomal representation
of solutions.

2. Initial population: Creation of an initial population
of chromosomes.

3. Fitness: Measurement of chromosome fitness based
on the objective function.

4. Selection: Natural selection of some chromosomes
(parents) in the population for generating new
members (children) in the population.

5. Genetic operators: Genetic operators applied to
these chromosomes whose role is to create new
members (children) in the population by crossing the
genes of two chromosomes (crossover operators) or

by modifying the genes of one chromosome
(mutation operators).

6. Replacement: Natural selection of the members of
the population who will survive.

7. Parameter selection: Natural convergence of the
whole population that is globally improved at each
step of the algorithm.

The performance of a GA depends largely on the design
of the above components and the choice of parameters such as
population size, probabilities of genetic operators (crossover
rate and mutation rate), and number of generations.

3.1. Solution encoding
For the single machine total weighted tardiness problem,

the natural permutation representation of a solution is a
permutation of the integers 1,…,n, which defines the
processing order of n jobs. Each chromosome is represented
by such a scheduling solution, i.e., the natural permutation
representation of a solution, so as to simplify solution
encoding. For example, for a 10-job problem,
A scheduling solution: 2 1 4 3 6 10 8 9 7 5
A chromosome: 2 1 4 3 6 10 8 9 7 5

3.2. Initial population
In order to approximate an optimal solution most

accurately, the initial population of chromosomes is created by
heuristic dispatching rules, combined with the random method
that generates chromosomes randomly. In this way, the search
space is decreased - hence guiding towards a quick optimal
solution by simplifying the solution space.

The dispatching rules are as follows:
1. EDD: The next job scheduled is a job that has the

earliest due date among the jobs that are not
scheduled yet. The resulting sequence is the same as
the sequence of jobs arranged in the ascending order
of their due dates.

2. WSPT: Calculate ratio Sj = pj / wj. Jobs are scheduled
in the ascending order of the ratios.

3. SPT (Shortest Processing Time): Jobs are scheduled
in the ascending order of their processing times.

4. BWF (Biggest Weight First): Jobs are scheduled in
the descending order of their weights.

5. AU (Apparent Urgency) [16]: Calculate apparent
urgency priority AUj. Jobs are arranged in the
descending order of their apparent urgency priorities.

)
pk

}ptdmax{0,
)exp(

p
w

(AU jj

j

j
j ⋅

−−−
=

Here, k represents the look-ahead parameter and is set
according to the tightness of the due date; p is the average
processing time; t is the current time, but for static problems,
here t = 0. This heuristic has the same time complexity as
EDD and WSPT.

3.3. Fitness
When a population is generated, each chromosome is

evaluated and its fitness is calculated as follows. The total
weighted tardiness is computed for each chromosome. Then
chromosomes are sorted by the increasing values of their total

 3

weighted tardiness. Finally, the first chromosome is assigned
its fitness with the value of population size minus one. The
fitness of a chromosome is assigned the value of the fitness of
its forward adjacent chromosome minus one.

3.4. Selection
By selection methods, chromosomes (parents) are

selected from the population for combining to produce new
chromosomes (children), for applying genetic operators. Here
we use a selection method that selects parents randomly due to
its simplicity.

3.5. Genetic operators

1) Crossover: The role of a crossover operator is to combine
elements from two parent chromosomes to generate one or
more child chromosomes. Here we use position-based
crossover. Position-based crossover randomly chooses 0.5*n
(n is the number of jobs) positions, and the characters (genes)
in these positions are kept unchanged in the offspring. For
example, for a 10-job problem, with selected crossover
positions 2, 4, 5, 7 and 9:

For crossover
Positions: 0 1 2 3 4 5 6 7 8 9
Parent 1: 1 2 3 4 5 6 7 8 9 10
Parent 2: 3 5 9 6 1 10 8 4 2 7
Child 1: 2 3 9 5 1 10 6 4 8 7
Child 2: 9 1 3 4 5 6 2 8 7 10

2) Mutation: The role of a mutation operator is to provide
and maintain diversity in a population so that other operators
can continue to work. Here we use order-based mutation. Two
positions are selected randomly, and two characters (genes) in
these positions are interchanged. For example, with selected
positions 2 and 5:
For crossover
Positions: 0 1 2 3 4 5 6 7 8 9
Parent: 1 2 3 4 5 6 7 8 9 10
Child: 1 2 6 4 5 3 7 8 9 10
We choose position-based crossover and order-based mutation
due to their good performance [25] and simplicities.
3.6. Replacement

This selection is based on elitism [5] due to its simplicity.
That is to keep the best chromosomes of the current
population and their offspring. These best chromosomes form
a new population to survive into the next generation. Our
genetic algorithm is summarized by the pseudo-code in Fig. 1

3.7. Parameter selection
For choosing suitable values of parameters such as

population size, crossover rate, and mutation rate, we use De
Jong’s guidelines, as cited by [8], which are still widely
followed, namely, to start with:

1. A relatively high crossover probability (0.6-0.7);
2. A relatively low mutation probability (typically set to

1/λ for chromosomes of length λ);
3. A moderately sized (50-500) population.
Therefore, we apply the position-based crossover operator

to N/2 pairs of chromosomes selected randomly, where N is

the population size. The mutation probability, which
determines the mutation rate, is set to 1/λ, where λ is the
length of a chromosome. Population size and generation size
are dependent on the problem size.

4. COMPUTATIONAL RESULTS

Two 7-job problems, two 10-job problems, and one 25-
job problem are selected as computational examples to show
optimal solutions obtained when applying the genetic
algorithm. The genetic algorithm is also applied to solve
randomly generated problems with 50, 100, 200, and 500 jobs
to show the performance obtained and the efficiency of the
proposed algorithm.

4.1. Computational examples
Example 1: Table 1 presents a 7-job example taken from

[17] that has an optimal solution 2-1-4-5-3-6-7 with total
weighted tardiness 454. The computational results of the
genetic algorithm are 4-2-1-5-3-6-7 with total weighted
tardiness 454.

Example 2: Table 2 presents another 7-job example taken
from [18]. Our computational results are 1-4-2-3-7-6-5 with
total weighted tardiness 4.

Example 3: Table 3 presents a 10-job example taken
from [22] that has an optimal solution 1-2-3-5-4-6-8-9-7-10
with total weighted tardiness 27. Our computational results are
the same.

Example 4: Table 4 presents another 10-job example
taken from [23]. The total weighted tardiness of heuristic
dispatching rules EDD, WSPT, SPT, BWF, and AU (k = 2)
are 496, 383, 535, 355, and 230 respectively. Our
computational results are 3-1-8-4-5-9-7-6-10-2 with total
weighted tardiness 218.

Table 1: 7-Job Problem of Example 1
j 1 2 3 4 5 6 7
pj 12 13 14 16 26 31 32
dj 42 33 51 48 63 88 146
wj 7 9 5 14 10 11 8

Table 2: 7-Job Problem of Example 2
j 1 2 3 4 5 6 7
pj 6 18 12 10 10 17 16
dj 1 5 2 4 1 4 2
wj 8 42 44 24 90 85 68

Table 3: 10-Job Problem of Example 3
j 1 2 3 4 5 6 7 8 9 10
pj 4 1 2 4 1 4 2 2 3 2
dj 3 4 7 8 11 15 16 20 20 25
wj 3 1 4 2 3 5 1 5 3 10

Table 4: 10-Job Problem of Example 4
j 1 2 3 4 5 6 7 8 9 10
pj 8 12 6 10 3 11 9 11 13 7
dj 26 28 32 35 38 48 50 51 53 64
wj 4 1 6 5 1 4 5 9 8 1

 4

Notation
N is the population size. BESTSEQ is the better-found sequence. BEST is the better-found total weighted
tardiness.
T(σ) is a function that calculates the total weighted tardiness of the sequence σ.
RANDSEQ is a function that creates a permutation of 1, 2, …, n randomly.
MBEST(σ) is a function that updates BEST and BESTSEQ if the sequence σ is better.
SORT(σ1, σ2, …, σN) is a function that sorts the sequences σ1, σ2, …, σN in the increasing order of their total
weighted tardiness.
INSERT(σ1, σ2, …, σN, л) is a function that inserts the sequence л into the sequences σ1, σ2, …, σN if it is better
and deletes the last sequence. Actually, “π” kicks the last sequence out of the line if “π” is better
K is the generation size.
RANDOM(N) is a function that gives an integer between 1 and N randomly.
CROSSOVER(σ1, σ2) is a function that generates two new sequences by applying the position-based crossover
operator to two sequences σ1 and σ2.
M is the mutation size that equals [(1/ λ)*N], where λ is the length of a chromosome.
MUTATION(σ) is a function that generates a new sequence by applying the order-based mutation operator to the
sequence σ.
// Initialization phase
BESTSEQ := EDD, WSPT, SPT, BWF, or AU;
BEST := T(BESTSEQ);
for i increasing from 1 by 1 until N do σi := RANDSEQ and MBEST(σi);
SORT(σ1, σ2, …, σN);
INSERT(σ1, σ2, …, σN, EDD|WSPT|SPT|BWF|AU);
// generation phase
for k increasing from 1 by 1 until K do
begin

// computation of the fitness for the population
FT(σ1) := N - 1;
for i increasing from 2 by 1 until N do FT(σi) := FT(σi-1) – 1;
// crossover phase
for i increasing from 1 by 1 until N/2 do
begin

// selection of two parents
repeat

μi,1 := RANDOM(N); μi,2 := RANDOM(N);
until μi,1 ≠ μi,2;
// application of crossover operator
(π2i-1, π2i) := CROSSOVER(σμi,1, σμi,2);
MBEST(π2i-1); MBEST(π2i);

end
// mutation phase
for i increasing from 1 by 1 until M do
begin

// selection of one parent
h := RANDOM(N);
ωi := MUTATION(πh); MBEST(ωi);

end
// replacement phase
for i increasing from 1 by 1 until N do INSERT(σ1, σ2, …, σN, πi);
for i increasing from 1 by 1 until M do INSERT(σ1, σ2, …, σN, ωi);

end;
print BESTSEQ, BEST;

Fig. 1. Pseudo-Code of Genetic Algorithm

 5

Example 5: Table 5 presents one 25-job example taken
from [9] that has the results 7-17-10-4-6-21-2-12-24-13-1-9-
25-3-5-23-8-18-14-15-22-16-19-11-20 with the total weighted
tardiness 14,930. Our computation results are 5-9-17-10-4-6-
21-2-12-24-13-1-25-7-3-23-8-18-14-15-22-16-19-11-20 with
the total weighted tardiness 14,410.

4.2. General problems
The genetic algorithm is also extensively tested on a set

of randomly generated problems with 50, 100, 200 and 500
jobs, namely, general problems, which are created using the
methods described in [4, 9, 19-20]. The general problems are
generated as follows:
1. Each job j is assigned an integer processing time pj in the

uniform distribution (1, 100), an integer weight wj in the
uniform distribution (1, 10).

2. The difficulty of each problem depends on the range of
due dates (RDD) and on the tightness factor of due dates
(TF). RDD and TF values are selected from the set {0.2,
0.4, 0.6, 0.8, 1.0} respectively.

3. The range of due dates is defined as

RDD =
max

minmax

C
 - dd

4. A high value of RDD indicates a wide range of due dates,
whereas a low value indicates a narrow range of due
dates.

5. The tightness factor of due dates is defined as

TF =
max

1
nC

d j∑−

6. Values of TF close to 1 indicate that the due dates are
tight and values close to 0 indicate that the due dates are
loose.

7. Each job j is assigned an integer due date dj in the
uniform distribution (P*(1-TF-RDD/2), P*(1-

TF+RDD/2)), where P = ∑ =

n

j jp
1

. When P*(1-TF-

RDD/2) is less than or equal to 0, dj is in the uniform
distribution (1, P*(1-TF+RDD/2)).

8. For each value of n, i.e., 50, 100, 200, and 500, five
problems have been generated for each of the 25 pairs of
values of RDD and TF. Thus a total of 500 problems have
been generated.
As these problems have more than 50 jobs, the optimal

solutions are not available. Therefore, computational results
have been compared with the computational results of descent
methods, i.e., DES and DESO, and two heuristic dispatching
rules, EDD and WSPT, to show their improvement from the
better of these two heuristic dispatching rules.

Descent Methods: These are pairwise interchange
methods, including DES and DESO [4, 9, 20]. They begin
with the sequence obtained by applying the AU dispatching
rule and exchange jobs (u, v) from (1, 2) to (1, 3), (1, 4), …,
and (n-1, n), where (u, v) means to exchange the job in the uth
position with the job in the vth position.

DES: This is the strict descent method in which only
pairwise job exchanges yielding a decrease in objective

Table 6: Computational results for general problems with
50 jobs

RDD TF DES
%Imp (%)

DESO
%Imp (%)

GA
%Imp (%)

0.2 0.2 39.36 39.22 49.10
 0.4 12.62 13.60 27.29
 0.6 3.89 3.81 12.25
 0.8 -1.22 -1.24 6.89
 1.0 -1.60 -1.61 1.06

0.4 0.2 19.96 22.93 22.46
 0.4 44.30 43.94 60.23
 0.6 19.41 19.80 34.52
 0.8 0.207 0.207 14.10
 1.0 -1.19 -1.19 4.13

0.6 0.2 - - -
 0.4 52.23 52.67 69.64
 0.6 34.80 34.26 56.18
 0.8 12.58 12.59 28.47
 1.0 0.68 0.64 7.99

0.8 0.2 - - -
 0.4 46.21 47.77 57.01
 0.6 41.53 41.74 59.09
 0.8 20.64 20.59 42.72

 1.0 3.45 3.47 15.88
1.0 0.2 - - -

 0.4 - - -
 0.6 52.16 51.54 66.84
 0.8 26.92 27.42 44.78
 1.0 9.41 9.18 26.75

Table 5: 25-Job Problem of Example 5
Job number Process times Due dates Weights

1 71 595 7
2 8 477 7
3 24 768 7
4 35 259 10
5 25 171 2
6 76 321 7
7 92 157 6
8 63 898 3
9 71 201 6
10 56 218 6
11 69 730 1
12 97 484 9
13 25 567 10
14 85 1055 9
15 93 1058 7
16 78 559 2
17 60 197 7
18 21 965 3
19 84 490 2
20 94 334 1
21 58 352 7
22 92 428 4
23 97 686 6
24 26 493 5
25 56 670 4

 6

function, here the total weighted tardiness, are accepted.
DESO (Descent Method with Zero Interchanges): In this

method, pairwise job exchanges yielding no change in
objective function are also accepted, in addition to exchanges
yielding a decrease in objective function. Accepting an
exchange yielding no change in objective function is because
both jobs may be early and remain so even after the exchange.

Percentage Improvement: The percentage improvement is
calculated by the following equation [9]:

)T,Tmin(
T)T,Tmin(

Imp%
WSPTEDD

HWSPTEDD −
= * 100%

where TEDD is the total weighted tardiness obtained after
applying EDD rule, TWSPT is the total weighted tardiness
obtained after applying WSPT rule, and TH is the total
weighted tardiness obtained after applying a certain heuristic
method. Here, the heuristic methods are DES, DESO, and the
genetic algorithm. Hence, their computational results are
compared with the better of two dispatching rules, EDD and
WSPT.

Tables 6-9 present the computational results for the
problems with 50, 100, 200, and 500 jobs respectively when
applying the GA, which are compared with these of DES and
DESO, where “-“ means the total weighted tardiness of the
problem is zero when applying EDD, WSPT, AU, DES,
DESO, or GA respectively. For AU, the look ahead parameter
is k = 0.5, 0.9, 2.0, 2.0, and 2.0 for TF = 0.2, 0.4, 0.6, 0.8, and

1.0 respectively. The GA is coded in C language and the
computational tests are carried out on a DELL Dimension
8200 PC. Here, for the same problem size, the population and
generation sizes of the GA are the same. The analysis of the
computational results is as follows:
1. For the same problem size, different problems have

different percentage improvements and computation
times. The GA has the best improvements, but needs
more computation times. For the worst case, the
computation times for problems with 50, 100, 200, and
500 jobs are 20 seconds, 45 seconds, 2 minutes 30
seconds, and 12 minutes respectively. The computation
times are a reasonable price to pay for the improvement in
performance.

2. When the problem size increases, the percentage
improvements of descent methods decline. However, the
percentage improvements of the GA can be stable or
better if we enlarge the population size and/or generation
size of the GA. However, there is a trade-off between the
improvement in performance and the computation times.

5. CONCLUSIONS

In this paper, we propose a new genetic algorithm for
solving the single machine total weighted tardiness scheduling
problem. Technique simplicity is employed as guidance
throughout the development of this genetic algorithm to speed

Table 7: Computational results for general problems
with 100 jobs

RDD TF DES
%Imp
(%)

DESO
%Imp (%)

GA
%Imp (%)

0.2 0.2 49.83 46.55 59.73
 0.4 5.54 6.85 26.29
 0.6 0.40 1.05 12.17
 0.8 -2.39 -2.38 6.76
 1.0 -3.71 -3.70 1.06

0.4 0.2 17.64 17.64 17.64
 0.4 45.79 47.48 60.89
 0.6 13.79 13.07 33.20
 0.8 0.31 0.32 12.93
 1.0 -3.97 -4.04 4.21

0.6 0.2 - - -
 0.4 49.14 49.70 69.85
 0.6 29.13 30.10 55.39
 0.8 6.12 6.13 21.82
 1.0 -2.91 -2.90 8.30

0.8 0.2 - - -
 0.4 57.06 50.03 56.32
 0.6 44.99 45.24 65.30
 0.8 15.29 15.42 35.61
 1.0 1.29 1.28 15.07

1.0 0.2 - - -
 0.4 - - -
 0.6 56.43 57.22 74.12
 0.8 27.70 27.59 49.10
 1.0 6.28 6.30 22.21

Average 19.70 19.47 33.71

Table 8: Computational results for general problems
with 200 jobs

RDD TF DES
%Imp
(%)

DESO
%Imp (%)

GA
%Imp (%)

0.2 0.2 38.91 42.61 57.17
 0.4 6.38 6.77 27.31
 0.6 -1.07 -1.04 13.51
 0.8 -3.65 -3.67 5.79
 1.0 -5.55 -5.56 0.98

0.4 0.2 27.54 28.24 30.92
 0.4 33.67 34.85 58.04
 0.6 13.11 13.31 33.63
 0.8 0.50 0.49 13.37
 1.0 -4.12 -4.12 3.56

0.6 0.2 - - -
 0.4 51.68 54.92 76.04
 0.6 24.15 24.09 48.48
 0.8 5.10 5.04 22.58
 1.0 -3.23 -3.23 7.38

0.8 0.2 - - -
 0.4 55.06 49.87 59.31
 0.6 36.30 36.57 61.42
 0.8 13.63 13.54 33.75
 1.0 -0.43 -0.43 13.88

1.0 0.2 - - -
 0.4 - - -
 0.6 50.90 51.57 70.64
 0.8 24.17 24.34 48.47
 1.0 3.56 3.55 21.79

Average 17.46 17.70 33.72

 7

up its running in order to solve large-size problems. The
genetic algorithm is based on the natural permutation
representation of a chromosome for encoding simplicity, the
combination of dispatching rules and random method to create
the initial population for improving searching space,
consequently searching simplicity, position-based crossover
and order-based mutation for operator simplicity, and elitism
for searching simplicity as well.

Computational results show that the solutions of the GA
are better than those of heuristic dispatching rules and descent
methods, but the GA needs more computation times.
However, the computation time of the GA is reasonable for
good solutions. In addition, the GA is speeded up on solving
problems with up to 500 jobs. Therefore the GA can obtain
good solutions in an efficient way. Future work will be carried
out on the comparison of our computational results with other
published GAs’ by running the GA on their problems in
literature.

REFERENCES
1. Alexandre, F., Cardeira, C., Charpillet, F., Mammeri, Z., and Portmann,

M.–C. “Compu-search methodologies II: Scheduling Using Genetic
Algorithms and Artificial Neural Networks”, in A. Artiba, and S.E.
Elmaghraby, eds., The Planning and Scheduling of Production Systems,
London: Chapman and Hall. pp. 300-335, 1997

2. Akturk, M.S., “A new dominance rule for the total weighted tardiness
problem”, Production Planning and Control, 10(2), pp. 138-149, 1999.

3. Avci S., Akturk, M.S., and Storer, R.H., “A Problem Space Algorithm
for Single Machine Weighted Tardiness Problems”, IIE Transactions,
35, 479-486, 2003

4. Crauwels, H.A.J., Potts, C.N., and Wassenhove, L.N.V., “Local Search
Heuristics for the Single Machine Total Weighted Tardiness Scheduling
Problem” INFORMS Journal on Computing, 10(3), pp, 341-350, 1998.

5. Goldberg, D.E., “Genetic Algorithms in Search, Optimization and
Machine Learning”, Massachusetts: Addison-Wesley. 1989

6. Grosso, A., Croce, F.D, and Tadei, A., “An Enhanced Dynasearch
Neighborhood for the Single Machine Total Weighted Tardiness
Scheduling Problem”, Operations Research Letters, 32(1), pp. 68-72,
2004.

7. Holland, J.H., “Adaptation in Natural and Artificial Systems”,
University of Michigan Press, Ann Arbor, 1975

8. Hopgood, A.A., “Genetic Algorithms” In: A.A. Hopgood, Intelligent
Systems for Engineers and Scientists, CRC Press, Florida, pp. 173-194
2001.

9. Huegler, P.A., and Vasko, F.J., “A Performance Comparison of
Heuristics for the Total Weighted Tardiness Problem”, Computers and
Industrial Engineering, 32(4), pp. 753-767, 1997

10. Jouglet, A., Baptiste, P., and Carlier, J., “Exact Procedure for Single
Machine Total Cost Scheduling”, IEEE International Conference on
Systems, Man and Cybernetics, Oct 6-9, 2002

11. Kan, A.H.G.R., Lageweg, B.J., and Lenstra, J.K., “Minimizing Total
Costs in One Machine Scheduling”, Operations Research, 23, pp. 908-
927, 1975

12. Lenstra, J.K., Kan, A.H.G.K., and Brucker, P., “Complexity of Machine
Scheduling Problems”, Annals of Discrete Mathematics, 1, pp. 343-362,
1977.

13. Madureira, A., Ramos, C., and Silva, S.d.C., “A GA based Scheduling
System for Dynamic Single Machine Problem”, Proceedings of the 4th
IEEE International Symposium on Assembly and Task Planning, Soft
Research Park, Fukuoka, Japan, pp. 262-267, 2001

14. Maheswaran, R., and Ponnambalam, S.G., “An Investigation on Single
Machine Total Weighted Tardiness Scheduling Problems”, Intl. Jour. of
Advanced Manufacturing Technology, 22(3-4), pp. 243-248, 2003

15. Matsuo, H., Suh, C.J., and Sullivan, R.S., “A Controlled Search
Simulated Annealing Method for the Single Machine Weighted
Tardiness Problem”, Annals of Operations Research, 21, 85-108, 1989

16. Morton, T.E., Rachamadugu, R.M., and Vepsalainen, A., “Accurate
Myopic Heuristics for Tardiness Scheduling”, GSIA Working Paper No.
36-83-84, Carnegie-Mellon University, PA, 1984

17. Picard, J.C., and Queyranne, M., “The Time-Dependent Traveling
Salesman Problem and its Application to the Tardiness Problem in One-
Machine Scheduling”, Operations Research, 26(1), pp. 86-110, 1978.

18. Pinedo, M., “Scheduling: Theory, Algorithms, and Systems”, Prentice
Hall, 2001.

19. Potts, C.N., and Wassenhove, L.N.V., “A Branch and Bound Algorithm
for the Total Weighted Tardiness Problems”, Operations Research,
33(2), pp. 363-377, 1985

20. Potts, C.N., and Wassenhove, L.N.V., “Single Machine Tardiness
Sequencing Heuristics”, IIE Transactions, 23(4), 346-354. 1991

21. Schrage, L., and Baker, K.R., “Dynamic Programming Solution of
Sequencing Problem with Precedence Constraints”, Operations
Research, 26, pp. 444-449, 1978

22. Shwimer, J., “On the n-job, One-machine, Sequence-independent
Scheduling Problem with Tardiness Penalties: A Branch-Bound
Solution”, Management Science, 18(6), B-301-B-313, 1972.

23. Sipper, D., and Bulfin, Jr., R.L.. “Production: Planning, Control, and
Integration”, p. 399, McGraw-Hill, 1997.

24. Sule, D.R., “Heuristic Method for a Single Machine Scheduling
Problem”, Intl. Jour. of Industrial Engineering, 1(2), pp. 167-174, 1994

25. Syswerda, G., “Schedule Optimization Using Genetic Algorithms”, in L.
Davis, eds., Handbook of Genetic Algorithms, pp. 332-349), Van
Nostrand Reinhold., 1991

26. Ying, K.C., and Liao C.J., “An Ant Colony System Approach for
Scheduling Problems’, Production Planning and Control, 14(1), 68-75,
2003.

Table 9: Computational results for general problems with
500 jobs

RDD TF DES
%Imp
(%)

DESO
%Imp (%)

GA
%Imp (%)

0.2 0.2 49.16 49.55 58.26
 0.4 4.66 3.92 22.63
 0.6 -1.72 -1.84 11.07
 0.8 -2.94 -3.55 5.90
 1.0 -5.09 -5.09 0.90

0.4 0.2 21.74 14.86 43.44
 0.4 35.89 35.39 60.25
 0.6 11.12 10.77 31.49
 0.8 0.01 0.01 11.52
 1.0 -5.21 -5.21 3.06

0.6 0.2 - - -
 0.4 50.10 55.54 76.23
 0.6 19.81 19.73 44.84
 0.8 3.33 3.33 17.77
 1.0 -3.71 -3.71 6.49

0.8 0.2 - - -
 0.4 39.84 45.60 68.73
 0.6 25.32 25.33 46.50
 0.8 15.18 11.25 29.95
 1.0 -0.68 -0.68 11.64

1.0 0.2 - - -
 0.4 - - -
 0.6 38.52 38.43 61.26
 0.8 15.35 15.32 37.04
 1.0 2.11 2.11 18.03
Average 14.89 14.81 31.76

 8

Ms. Ning Liu is currently a Ph.D. candidate of Electrical and
Computer Engineering Department at Tennessee Technological
University. She earned her M.S and B.S. degrees from
Computer Science and Engineering Department at Zhejiang
University, China. Her research interests are in artificial
intelligence, planning and scheduling

Dr. Abdelrahman joined the Electrical and Computer
Engineering (ECE) Department, Tennessee Technological
University (TTU) in 1997. He is currently an associate
professor in the ECE department and an associate faculty with
the Center for Manufacturing Research, TTU. He earned a
Ph.D. in Nuclear Engineering with Emphasis on Reactor

Control in 1996 and an MS in Measurement and Control Engineering in 1994
from Idaho State University. He also earned an MS in Engineering Physics
and a BS in Electrical Engineering from Cairo University, Egypt in 1992 and
1988, respectively. His main research interests include intelligent systems,
measurement systems, mechatronics and integration of sensing and control
with special focus on industrial applications. Dr. Abdelrahman has been the
principal investigator on several major research projects aiming at improving
the operational efficiency of the metal casting industry through intelligent
sensing and control.

Dr. Ramaswamy is currently the chairperson of Department of
Computer Science at University of Arkansas at Little Rock.
Earlier he was the Chairperson of the Computer Science
Department at Tennessee Tech University. His research
interests are on intelligent and flexible control systems,
behavior modeling, analysis and simulation, software stability

and scalability; particularly in the design and development of better software
systems for real-time control issues in manufacturing and other distributed,
real-time applications. He has actively consulted on the design, development
and implementation of a knowledge capture, classification and mining project
with eFutureKnowledge, Inc. and on a NIST sponsored ATP project with
InRAD, LLC. During the summers of 2003 and 2004, he was a visiting
research professor of Computer Science in the Institute of Software Integrated
Systems (ISIS) at Vanderbilt University as part of a NSF ITR project -
Foundations of Hybrid and Embedded Software Systems. In 1994-1995, and
subsequently during the summer months of 1996 and 1998, he was a post-
doctoral research fellow / visiting scientist in the Laboratory for Intelligent
Processes and Systems (LIPS) at the University of Texas at Austin where he
helped with research efforts on Sensible Agents. Dr. Ramaswamy earned his
Ph.D. degree in Computer Science in 1994 from the Center for Advanced
Computer Studies (CACS) at the University of Southwestern Louisiana,
Lafayette, LA, USA (now University of Louisiana at Lafayette). He is member
of the ACM, Society for Computer Simulation International, Computing
Professionals for Social Responsibility and a senior member of the IEEE.

