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  Abstract— This paper presents a new genetic algorithm for the 
single machine total weighted tardiness scheduling problem, 
which is a strong NP-hard problem.  The developmental focus 
has been on techniques to speed up execution in order to solve 
large-size problems.  This genetic algorithm uses the natural 
permutation representation of a chromosome for encoding 
simplicity.  Heuristic dispatching rules combined with a random 
method are used to create the initial population for improving 
(decreasing) the search space, consequently improving searching 
simplicity. Position-based crossover and order-based mutation 
operators are used for operator simplicity.  The best members of 
the population during generations are used for searching 
simplicity, too. Extensive computational results for randomly 
generated problems with up to 500 jobs show the good 
performance and the efficiency of the developed algorithm. 

 
Keywords:  Scheduling, Genetic algorithm, Local search 

1. INTRODUCTION 

The single machine total weighted tardiness problem is to 
schedule n jobs on a single machine to minimize the sum of 
the weighted tardiness of all the jobs. For arbitrary positive 
weights, it is strongly NP-hard [12].  Many scheduling 
problems, which do not have efficient, so-called polynomial 
time, optimal algorithms, are the so-called NP-hard problems; 
efficient optimal algorithms are unlikely to exist for these 
problems. An algorithm is referred to as a polynomial time 
algorithm when the number of iterations in the algorithm is 
polynomial in the size (n, the number of jobs) of the problem. 
Consider the various permutations of the n jobs of the total 
weighted tardiness problem to find the optimal schedule. Even 
for a modest-sized problem, complete enumeration is not 
computationally feasible since the complete enumeration 
requires the evaluation of n! sequences (e.g., a 20-job problem 
requires the evaluation of more than 2.4 * 1018 sequences) 
[22]. 

As single machine scheduling problems can provide help 
and insight into resolving, understanding, managing, and 
modeling more complex multi-machine scheduling problems, 
the single machine total weighted tardiness problem has 
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received much attention in literature. The single machine total 
weighted tardiness problem has been tackled by enumerative 
algorithms: branch and bound algorithms [10, 17, 19, 22] and 
dynamic programming algorithms [21] to generate exact 
solutions that are guaranteed to be optimal. But the branch and 
bound algorithms are limited by computational times and the 
dynamic programming algorithms are limited by computer 
storage requirements, especially when the number of jobs is 
more than about 50 [4]. Thereafter, the problem has been 
extensively studied by heuristics -- solution procedures that 
generate good or even optimal solutions, but do not guarantee 
optimality.  

These heuristics include heuristic dispatching rules [2, 11, 
26] and local search heuristics. As there is no single best 
dispatching rule for all problem environments, in other words, 
dispatching rules do not consistently provide good quality 
solutions, in recent years, much attention has been devoted to 
local search heuristics [9, 14, 24]. These local search 
heuristics mainly include neighborhood search methods, such 
as descent methods, simulated annealing, threshold accepting, 
and tabu search [4, 6, 15, 19]; and genetic algorithms (GA) [3, 
4, 13].  

Crauwels et al. [4] compare the performance of a number 
of local search heuristics that have the binary representation, 
namely, descent methods, simulated annealing, threshold 
accepting, tabu search, and GA, for total weighted tardiness 
problems with 40, 50, and 100 jobs.  The paper indicates that 
its binary encoded GA performs very well and requires 
comparatively little computation time; this binary encoded GA 
is also a viable alternative to other heuristic methods, 
especially in view of its small maximum relative deviations 
and modest computation time.  Madureira et al. [13] also 
obtain good solutions in a short time by a natural permutation 
encoded GA for problems with 40 and 50 jobs. Avci et al. [3] 
propose a GA for problems with 200 jobs that use global and 
local dominance rules to improve the neighborhood structure 
of the search space and obtain almost the same results as those 
of Crauwels et al. [4].  

In this paper, we present a new genetic algorithm for 
solving the single machine total weighted tardiness problem. 
Our algorithm is different from the algorithms in [3, 4, 13], 
and in chromosome representation, initial creation of the 
population, genetic operators, parameters selection, and 
population replacement. Technique simplicity is employed as 
guidance throughout the development of this genetic 
algorithm to speed up its running in order to solve large-size 
problems. The algorithm is illustrated using 500-job problems.  

This genetic algorithm uses the natural permutation 
representation of a chromosome for encoding simplicity. 
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Heuristic dispatching rules combined with random methods 
are used to create the initial population for improving 
(decreasing) the search space, thereby improving searching 
simplicity. Position-based crossover and order-based mutation 
operators are used for operator simplicity. The best members 
of the population during generations are used for searching 
simplicity, too. The algorithm has been applied to two 7-job 
problems, two 10-job problems, and one 25-job problem to 
show optimal solutions obtained. The algorithm has also been 
applied to solve randomly generated problems with 50, 100, 
200, and 500 jobs. Their computational results are compared 
with those of other scheduling methods to show the 
improvement from the better of two heuristic dispatching 
rules, Earliest Due Date (EDD) and Weighted Shortest 
Processing Time (WSPT), whose definitions are given in 
Section 3. 

The paper is organized as follows. Section 2 presents the 
definition of the single machine total weighted tardiness 
problem. Section 3 describes the genetic algorithm for solving 
this problem. Section 4 reports the computational results of 
the algorithm. Section 5 summarizes the main conclusions.  

2. PROBLEM DEFINITION 
The single machine total weighted tardiness problem is 

defined as follows. Consider n jobs to be processed without 
interruption on a single machine that can handle only one job 
at a time. Each job j, available for processing at time zero, has 
a positive processing time pj, a positive weight wj, and a 
positive due date dj. For a given sequence of jobs, the 
tardiness of job j is defined as Tj = max {0, Cj – dj}, where Cj 
is the completion time of job j. The objective of the total 
weighted tardiness problem is to find a processing order of all 
the jobs; this order is a schedule that minimizes the sum of the 
weighted tardiness ∑ =

n
j jjTw1 of all jobs. Thus, the problem 

is to schedule n jobs on a single machine to minimize the sum 
of the weighted tardiness of all the jobs. 

3. GENETIC ALGORITHM 
Genetic Algorithms (GAs) were originally proposed by 

John H. Holland [7]. They are search algorithms that explore a 
solution space and mimic the biological evolution process. 
There are many GA implementations successfully applied to a 
great variety of problems [5]. The main components of a 
genetic algorithm are as follows [1]: 

1. Solution encoding: A chromosomal representation 
of solutions.  

2. Initial population: Creation of an initial population 
of chromosomes.  

3. Fitness: Measurement of chromosome fitness based 
on the objective function.  

4. Selection: Natural selection of some chromosomes 
(parents) in the population for generating new 
members (children) in the population.  

5. Genetic operators: Genetic operators applied to 
these chromosomes whose role is to create new 
members (children) in the population by crossing the 
genes of two chromosomes (crossover operators) or 

by modifying the genes of one chromosome 
(mutation operators).  

6. Replacement: Natural selection of the members of 
the population who will survive.  

7. Parameter selection: Natural convergence of the 
whole population that is globally improved at each 
step of the algorithm.  

The performance of a GA depends largely on the design 
of the above components and the choice of parameters such as 
population size, probabilities of genetic operators (crossover 
rate and mutation rate), and number of generations. 

3.1. Solution encoding 
For the single machine total weighted tardiness problem, 

the natural permutation representation of a solution is a 
permutation of the integers 1,…,n, which defines the 
processing order of n jobs. Each chromosome is represented 
by such a scheduling solution, i.e., the natural permutation 
representation of a solution, so as to simplify solution 
encoding. For example, for a 10-job problem, 
A scheduling solution:   2   1   4   3   6  10  8   9   7  5 
A chromosome:    2   1   4   3   6  10  8   9   7   5 

3.2. Initial population 
In order to approximate an optimal solution most 

accurately, the initial population of chromosomes is created by 
heuristic dispatching rules, combined with the random method 
that generates chromosomes randomly.  In this way, the search 
space is decreased - hence guiding towards a quick optimal 
solution by simplifying the solution space. 

The dispatching rules are as follows: 
1. EDD: The next job scheduled is a job that has the 

earliest due date among the jobs that are not 
scheduled yet. The resulting sequence is the same as 
the sequence of jobs arranged in the ascending order 
of their due dates. 

2. WSPT: Calculate ratio Sj = pj / wj. Jobs are scheduled 
in the ascending order of the ratios. 

3. SPT (Shortest Processing Time): Jobs are scheduled 
in the ascending order of their processing times. 

4. BWF (Biggest Weight First): Jobs are scheduled in 
the descending order of their weights. 

5. AU (Apparent Urgency) [16]: Calculate apparent 
urgency priority AUj. Jobs are arranged in the 
descending order of their apparent urgency priorities.  

)
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Here, k represents the look-ahead parameter and is set 
according to the tightness of the due date; p is the average 
processing time; t is the current time, but for static problems, 
here t = 0. This heuristic has the same time complexity as 
EDD and WSPT. 

3.3. Fitness 
When a population is generated, each chromosome is 

evaluated and its fitness is calculated as follows. The total 
weighted tardiness is computed for each chromosome. Then 
chromosomes are sorted by the increasing values of their total 
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weighted tardiness. Finally, the first chromosome is assigned 
its fitness with the value of population size minus one. The 
fitness of a chromosome is assigned the value of the fitness of 
its forward adjacent chromosome minus one. 

3.4. Selection 
By selection methods, chromosomes (parents) are 

selected from the population for combining to produce new 
chromosomes (children), for applying genetic operators. Here 
we use a selection method that selects parents randomly due to 
its simplicity. 

3.5. Genetic operators 

1) Crossover: The role of a crossover operator is to combine 
elements from two parent chromosomes to generate one or 
more child chromosomes. Here we use position-based 
crossover.  Position-based crossover randomly chooses 0.5*n 
(n is the number of jobs) positions, and the characters (genes) 
in these positions are kept unchanged in the offspring. For 
example, for a 10-job problem, with selected crossover 
positions 2, 4, 5, 7 and 9: 

For crossover 
Positions:  0    1    2    3    4     5     6    7    8   9 
Parent 1:   1    2    3    4    5     6     7    8    9   10 
Parent 2:    3    5    9    6    1    10    8    4    2    7 
Child 1:  2    3    9    5    1    10    6    4    8    7 
Child 2:  9    1    3    4    5     6     2    8    7   10 

2) Mutation: The role of a mutation operator is to provide 
and maintain diversity in a population so that other operators 
can continue to work. Here we use order-based mutation. Two 
positions are selected randomly, and two characters (genes) in 
these positions are interchanged. For example, with selected 
positions 2 and 5: 
For crossover 
Positions:  0    1    2    3    4     5     6    7    8   9 
Parent:   1    2    3    4    5     6     7    8    9   10 
Child:   1    2    6    4    5     3     7    8    9   10 
We choose position-based crossover and order-based mutation 
due to their good performance [25] and simplicities. 
3.6. Replacement 

This selection is based on elitism [5] due to its simplicity. 
That is to keep the best chromosomes of the current 
population and their offspring. These best chromosomes form 
a new population to survive into the next generation. Our 
genetic algorithm is summarized by the pseudo-code in Fig. 1 

3.7. Parameter selection 
For choosing suitable values of parameters such as 

population size, crossover rate, and mutation rate, we use De 
Jong’s guidelines, as cited by [8], which are still widely 
followed, namely, to start with: 

1. A relatively high crossover probability (0.6-0.7); 
2. A relatively low mutation probability (typically set to 

1/λ for chromosomes of length λ); 
3. A moderately sized (50-500) population. 
Therefore, we apply the position-based crossover operator 

to N/2 pairs of chromosomes selected randomly, where N is 

the population size. The mutation probability, which 
determines the mutation rate, is set to 1/λ, where λ is the 
length of a chromosome. Population size and generation size 
are dependent on the problem size. 

4. COMPUTATIONAL RESULTS 

Two 7-job problems, two 10-job problems, and one 25-
job problem are selected as computational examples to show 
optimal solutions obtained when applying the genetic 
algorithm. The genetic algorithm is also applied to solve 
randomly generated problems with 50, 100, 200, and 500 jobs 
to show the performance obtained and the efficiency of the 
proposed algorithm. 

4.1. Computational examples 
Example 1: Table 1 presents a 7-job example taken from 

[17] that has an optimal solution 2-1-4-5-3-6-7 with total 
weighted tardiness 454. The computational results of the 
genetic algorithm are 4-2-1-5-3-6-7 with total weighted 
tardiness 454. 

Example 2: Table 2 presents another 7-job example taken 
from [18]. Our computational results are 1-4-2-3-7-6-5 with 
total weighted tardiness 4. 

Example 3: Table 3 presents a 10-job example taken 
from [22] that has an optimal solution 1-2-3-5-4-6-8-9-7-10 
with total weighted tardiness 27. Our computational results are 
the same.  

Example 4: Table 4 presents another 10-job example 
taken from [23]. The total weighted tardiness of heuristic 
dispatching rules EDD, WSPT, SPT, BWF, and AU (k = 2) 
are 496, 383, 535, 355, and 230 respectively. Our 
computational results are 3-1-8-4-5-9-7-6-10-2 with total 
weighted tardiness 218. 

 

Table 1: 7-Job Problem of Example 1 
j 1 2 3 4 5 6 7 
pj 12 13 14 16 26 31 32 
dj 42 33 51 48 63 88 146 
wj 7 9 5 14 10 11 8 

Table 2: 7-Job Problem of Example 2 
j 1 2 3 4 5 6 7 
pj 6 18 12 10 10 17 16 
dj 1 5 2 4 1 4 2 
wj 8 42 44 24 90 85 68 

Table 3: 10-Job Problem of Example 3 
j 1 2 3 4 5 6 7 8 9 10 
pj 4 1 2 4 1 4 2 2 3 2 
dj 3 4 7 8 11 15 16 20 20 25 
wj 3 1 4 2 3 5 1 5 3 10 

Table 4: 10-Job Problem of Example 4 
j 1 2 3 4 5 6 7 8 9 10 
pj 8 12 6 10 3 11 9 11 13 7 
dj 26 28 32 35 38 48 50 51 53 64 
wj 4 1 6 5 1 4 5 9 8 1 



 4

 
 

 
Notation 
N is the population size.  BESTSEQ is the better-found sequence.  BEST is the better-found total weighted 
tardiness. 
T(σ) is a function that calculates the total weighted tardiness of the sequence σ. 
RANDSEQ is a function that creates a permutation of 1, 2, …, n randomly. 
MBEST(σ) is a function that updates BEST and BESTSEQ if the sequence σ is better. 
SORT(σ1, σ2, …, σN) is a function that sorts the sequences σ1, σ2, …, σN in the increasing order of their total 
weighted tardiness. 
INSERT(σ1, σ2, …, σN, л) is a function that inserts the sequence л into the sequences σ1, σ2, …, σN if it is better 
and deletes the last sequence. Actually, “π” kicks the last sequence out of the line if “π” is better 
K is the generation size. 
RANDOM(N) is a function that gives an integer between 1 and N randomly. 
CROSSOVER(σ1, σ2) is a function that generates two new sequences by applying the position-based crossover 
operator to two sequences σ1 and σ2. 
M is the mutation size that equals [(1/ λ)*N], where λ is the length of a chromosome. 
MUTATION(σ) is a function that generates a new sequence by applying the order-based mutation operator to the 
sequence σ. 
// Initialization phase 
BESTSEQ := EDD, WSPT, SPT, BWF, or AU; 
BEST := T(BESTSEQ); 
for i increasing from 1 by 1 until N do σi := RANDSEQ and MBEST(σi); 
SORT(σ1, σ2, …, σN); 
INSERT(σ1, σ2, …, σN, EDD|WSPT|SPT|BWF|AU); 
// generation phase 
for k increasing from 1 by 1 until K do 
begin 

// computation of the fitness for the population 
FT(σ1) := N - 1; 
for i increasing from 2 by 1 until N do FT(σi) := FT(σi-1) – 1; 
// crossover phase 
for i increasing from 1 by 1 until N/2 do 
begin 

// selection of two parents 
repeat  

μi,1 := RANDOM(N); μi,2 := RANDOM(N);  
until μi,1 ≠ μi,2; 
// application of crossover operator 
(π2i-1, π2i) := CROSSOVER(σμi,1,  σμi,2); 
MBEST(π2i-1); MBEST(π2i); 

end 
// mutation phase 
for i increasing from 1 by 1 until M do  
begin 

// selection of one parent 
h := RANDOM(N); 
ωi := MUTATION(πh); MBEST(ωi); 

end 
// replacement phase 
for i increasing from 1 by 1 until N do INSERT(σ1, σ2, …, σN, πi); 
for i increasing from 1 by 1 until M do INSERT(σ1, σ2, …, σN, ωi); 

end; 
print BESTSEQ, BEST; 

Fig. 1. Pseudo-Code of Genetic Algorithm 
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Example 5: Table 5 presents one 25-job example taken 
from [9] that has the results 7-17-10-4-6-21-2-12-24-13-1-9-
25-3-5-23-8-18-14-15-22-16-19-11-20 with the total weighted 
tardiness 14,930. Our computation results are 5-9-17-10-4-6-
21-2-12-24-13-1-25-7-3-23-8-18-14-15-22-16-19-11-20 with 
the total weighted tardiness 14,410. 

4.2. General problems 
The genetic algorithm is also extensively tested on a set 

of randomly generated problems with 50, 100, 200 and 500 
jobs, namely, general problems, which are created using the 
methods described in [4, 9, 19-20]. The general problems are 
generated as follows: 
1. Each job j is assigned an integer processing time pj in the 

uniform distribution (1, 100), an integer weight wj in the 
uniform distribution (1, 10). 

2. The difficulty of each problem depends on the range of 
due dates (RDD) and on the tightness factor of due dates 
(TF). RDD and TF values are selected from the set {0.2, 
0.4, 0.6, 0.8, 1.0} respectively. 

3. The range of due dates is defined as 

RDD = 
max

minmax

C
 - dd

 

4. A high value of RDD indicates a wide range of due dates, 
whereas a low value indicates a narrow range of due 
dates. 

5. The tightness factor of due dates is defined as 

TF = 
max

1
nC

d j∑−  

6. Values of TF close to 1 indicate that the due dates are 
tight and values close to 0 indicate that the due dates are 
loose. 

7. Each job j is assigned an integer due date dj in the 
uniform distribution (P*(1-TF-RDD/2), P*(1-

TF+RDD/2)), where P = ∑ =

n

j jp
1

. When P*(1-TF-

RDD/2) is less than or equal to 0, dj is in the uniform 
distribution (1, P*(1-TF+RDD/2)). 

8. For each value of n, i.e., 50, 100, 200, and 500, five 
problems have been generated for each of the 25 pairs of 
values of RDD and TF. Thus a total of 500 problems have 
been generated.  
As these problems have more than 50 jobs, the optimal 

solutions are not available. Therefore, computational results 
have been compared with the computational results of descent 
methods, i.e., DES and DESO, and two heuristic dispatching 
rules, EDD and WSPT, to show their improvement from the 
better of these two heuristic dispatching rules. 

Descent Methods: These are pairwise interchange 
methods, including DES and DESO [4, 9, 20]. They begin 
with the sequence obtained by applying the AU dispatching 
rule and exchange jobs (u, v) from (1, 2) to (1, 3), (1, 4), …, 
and (n-1, n), where (u, v) means to exchange the job in the uth 
position with the job in the vth position. 

DES: This is the strict descent method in which only 
pairwise job exchanges yielding a decrease in objective 

Table 6: Computational results for general problems with 
50 jobs 

RDD TF DES 
%Imp (%) 

DESO 
%Imp (%) 

GA 
%Imp (%) 

0.2 0.2 39.36 39.22 49.10 
 0.4 12.62 13.60 27.29 
 0.6 3.89 3.81 12.25 
 0.8 -1.22 -1.24 6.89 
 1.0 -1.60 -1.61 1.06 

0.4 0.2 19.96 22.93 22.46 
 0.4 44.30 43.94 60.23 
 0.6 19.41 19.80 34.52 
 0.8 0.207 0.207 14.10 
 1.0 -1.19 -1.19 4.13 

0.6 0.2 - - - 
 0.4 52.23 52.67 69.64 
 0.6 34.80 34.26 56.18 
 0.8 12.58 12.59 28.47 
 1.0 0.68 0.64 7.99 

0.8 0.2 - - - 
 0.4 46.21 47.77 57.01 
 0.6 41.53 41.74 59.09 
 0.8 20.64 20.59 42.72 

 1.0 3.45 3.47 15.88 
1.0 0.2 - - - 

 0.4 - - - 
 0.6 52.16 51.54 66.84 
 0.8 26.92 27.42 44.78 
 1.0 9.41 9.18 26.75 

Table 5: 25-Job Problem of Example 5 
Job number Process times Due dates Weights 

1 71 595 7 
2 8 477 7 
3 24 768 7 
4 35 259 10 
5 25 171 2 
6 76 321 7 
7 92 157 6 
8 63 898 3 
9 71 201 6 
10 56 218 6 
11 69 730 1 
12 97 484 9 
13 25 567 10 
14 85 1055 9 
15 93 1058 7 
16 78 559 2 
17 60 197 7 
18 21 965 3 
19 84 490 2 
20 94 334 1 
21 58 352 7 
22 92 428 4 
23 97 686 6 
24 26 493 5 
25 56 670 4 
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function, here the total weighted tardiness, are accepted. 
DESO (Descent Method with Zero Interchanges): In this 

method, pairwise job exchanges yielding no change in 
objective function are also accepted, in addition to exchanges 
yielding a decrease in objective function. Accepting an 
exchange yielding no change in objective function is because 
both jobs may be early and remain so even after the exchange. 

Percentage Improvement: The percentage improvement is 
calculated by the following equation [9]: 

)T,Tmin(
T)T,Tmin(

Imp%
WSPTEDD

HWSPTEDD −
= * 100% 

where TEDD is the total weighted tardiness obtained after 
applying EDD rule, TWSPT is the total weighted tardiness 
obtained after applying WSPT rule, and TH is the total 
weighted tardiness obtained after applying a certain heuristic 
method. Here, the heuristic methods are DES, DESO, and the 
genetic algorithm. Hence, their computational results are 
compared with the better of two dispatching rules, EDD and 
WSPT. 

Tables 6-9 present the computational results for the 
problems with 50, 100, 200, and 500 jobs respectively when 
applying the GA, which are compared with these of DES and 
DESO, where “-“ means the total weighted tardiness of the 
problem is zero when applying EDD, WSPT, AU, DES, 
DESO, or GA respectively. For AU, the look ahead parameter 
is k = 0.5, 0.9, 2.0, 2.0, and 2.0 for TF = 0.2, 0.4, 0.6, 0.8, and 

1.0 respectively. The GA is coded in C language and the 
computational tests are carried out on a DELL Dimension 
8200 PC. Here, for the same problem size, the population and 
generation sizes of the GA are the same. The analysis of the 
computational results is as follows: 
1. For the same problem size, different problems have 

different percentage improvements and computation 
times. The GA has the best improvements, but needs 
more computation times. For the worst case, the 
computation times for problems with 50, 100, 200, and 
500 jobs are 20 seconds, 45 seconds, 2 minutes 30 
seconds, and 12 minutes respectively. The computation 
times are a reasonable price to pay for the improvement in 
performance. 

2. When the problem size increases, the percentage 
improvements of descent methods decline. However, the 
percentage improvements of the GA can be stable or 
better if we enlarge the population size and/or generation 
size of the GA. However, there is a trade-off between the 
improvement in performance and the computation times. 

5. CONCLUSIONS 

In this paper, we propose a new genetic algorithm for 
solving the single machine total weighted tardiness scheduling 
problem.  Technique simplicity is employed as guidance 
throughout the development of this genetic algorithm to speed 

Table 7: Computational results for general problems 
with 100 jobs 

RDD TF DES 
%Imp 
(%) 

DESO 
%Imp (%) 

GA 
%Imp (%) 

0.2 0.2 49.83 46.55 59.73 
 0.4 5.54 6.85 26.29 
 0.6 0.40 1.05 12.17 
 0.8 -2.39 -2.38 6.76 
 1.0 -3.71 -3.70 1.06 

0.4 0.2 17.64 17.64 17.64 
 0.4 45.79 47.48 60.89 
 0.6 13.79 13.07 33.20 
 0.8 0.31 0.32 12.93 
 1.0 -3.97 -4.04 4.21 

0.6 0.2 - - - 
 0.4 49.14 49.70 69.85 
 0.6 29.13 30.10 55.39 
 0.8 6.12 6.13 21.82 
 1.0 -2.91 -2.90 8.30 

0.8 0.2 - - - 
 0.4 57.06 50.03 56.32 
 0.6 44.99 45.24 65.30 
 0.8 15.29 15.42 35.61 
 1.0 1.29 1.28 15.07 

1.0 0.2 - - - 
 0.4 - - - 
 0.6 56.43 57.22 74.12 
 0.8 27.70 27.59 49.10 
 1.0 6.28 6.30 22.21 

Average 19.70 19.47 33.71 

Table 8:  Computational results for general problems 
with 200 jobs 

RDD TF DES 
%Imp 
(%) 

DESO 
%Imp (%) 

GA 
%Imp (%) 

0.2 0.2 38.91 42.61 57.17 
 0.4 6.38 6.77 27.31 
 0.6 -1.07 -1.04 13.51 
 0.8 -3.65 -3.67 5.79 
 1.0 -5.55 -5.56 0.98 

0.4 0.2 27.54 28.24 30.92 
 0.4 33.67 34.85 58.04 
 0.6 13.11 13.31 33.63 
 0.8 0.50 0.49 13.37 
 1.0 -4.12 -4.12 3.56 

0.6 0.2 - - - 
 0.4 51.68 54.92 76.04 
 0.6 24.15 24.09 48.48 
 0.8 5.10 5.04 22.58 
 1.0 -3.23 -3.23 7.38 

0.8 0.2 - - - 
 0.4 55.06 49.87 59.31 
 0.6 36.30 36.57 61.42 
 0.8 13.63 13.54 33.75 
 1.0 -0.43 -0.43 13.88 

1.0 0.2 - - - 
 0.4 - - - 
 0.6 50.90 51.57 70.64 
 0.8 24.17 24.34 48.47 
 1.0 3.56 3.55 21.79 

Average 17.46 17.70 33.72 
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up its running in order to solve large-size problems. The 
genetic algorithm is based on the natural permutation 
representation of a chromosome for encoding simplicity, the 
combination of dispatching rules and random method to create 
the initial population for improving searching space, 
consequently searching simplicity, position-based crossover 
and order-based mutation for operator simplicity, and elitism 
for searching simplicity as well.  

Computational results show that the solutions of the GA 
are better than those of heuristic dispatching rules and descent 
methods, but the GA needs more computation times. 
However, the computation time of the GA is reasonable for 
good solutions. In addition, the GA is speeded up on solving 
problems with up to 500 jobs. Therefore the GA can obtain 
good solutions in an efficient way. Future work will be carried 
out on the comparison of our computational results with other 
published GAs’ by running the GA on their problems in 
literature.  
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Table 9: Computational results for general problems with 
500 jobs 

RDD TF DES 
%Imp 
(%) 

DESO 
%Imp (%) 

GA 
%Imp (%) 

0.2 0.2 49.16 49.55 58.26 
 0.4 4.66 3.92 22.63 
 0.6 -1.72 -1.84 11.07 
 0.8 -2.94 -3.55 5.90 
 1.0 -5.09 -5.09 0.90 

0.4 0.2 21.74 14.86 43.44 
 0.4 35.89 35.39 60.25 
 0.6 11.12 10.77 31.49 
 0.8 0.01 0.01 11.52 
 1.0 -5.21 -5.21 3.06 

0.6 0.2 - - - 
 0.4 50.10 55.54 76.23 
 0.6 19.81 19.73 44.84 
 0.8 3.33 3.33 17.77 
 1.0 -3.71 -3.71 6.49 

0.8 0.2 - - - 
 0.4 39.84 45.60 68.73 
 0.6 25.32 25.33 46.50 
 0.8 15.18 11.25 29.95 
 1.0 -0.68 -0.68 11.64 

1.0 0.2 - - - 
 0.4 - - - 
 0.6 38.52 38.43 61.26 
 0.8 15.35 15.32 37.04 
 1.0 2.11 2.11 18.03 
Average 14.89 14.81 31.76 
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